Authors
Johanna Delanoy, Manuel Lagunas, Jorge Condor, Diego Gutierrez, Belen Masia
Universidad de Zaragoza
Portals
Abstract
Single-image appearance editing is a challenging task, traditionally requiring the estimation of additional scene properties such as geometry or illumination. Moreover, the exact interaction of light, shape and material reflectance that elicits a given perceptual impression is still not well understood. We present an image-based editing method that allows to modify the material appearance of an object by increasing or decreasing high-level perceptual attributes, using a single image as input. Our framework relies on a two-step generative network, where the first step drives the change in appearance and the second produces an image with high-frequency details. For training, we augment an existing material appearance dataset with perceptual judgements of high-level attributes, collected through crowd-sourced experiments, and build upon training strategies that circumvent the cumbersome need for original-edited image pairs. We demonstrate the editing capabilities of our framework on a variety of inputs, both synthetic and real, using two common perceptual attributes (Glossy and Metallic), and validate the perception of appearance in our edited images through a user study.
Related Works
Material Perception; Editing of Material Appearance